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1 Introduction 
The calculation of reasonably accurate wavefunctions for moderately large-sized 
molecules is now completely routine. For many authors the primary aim of 
performing such wave-mechanical calculations is to evaluate physical properties 
such as the dipole moment of a molecule, the electric field gradient at a nucleus, 
spectroscopic constants, and the like. However, from the early days of quantum 
mechanics others have repeatedly attempted to ‘interpret’ the wavefunction !#‘ 
(or to be rigorous Y2: the reader will recall that whilst !?’ itself has no direct 
physical meaning, y / z  d Y is taken to represent a probability). When Y is a 
many-electron wavefunction, Y2 dV becomes yz drl dsl dr2 ds2 . . . dr, dsn 
(where r and s indicate space and spin variables of the n electrons) and gives the 
probability of an instantaneous configuration of all electrons. The most common 
physical properties, however, depend on the probability per unit volume of 
finding a single electron (no matter which) at a given point r in space: this is 
given1 by 

The factor n arises because the n electrons are indistinguishable. The quantity P 
is often referred to as the ‘electron density’ since for many purposes the electron 
distribution may be treated as a smeared-out charge of density P (electrons per 
unit volume). 

The aim of such an investigation is to try to recover chemically useful infor- 
mation from Y, to see why it takes a particular form for a given molecule, and 
to rationalize how y/ changes from molecule to molecule; in other words, to 
obtain by reliable techniques answers to the questions posed by elementary 
descriptive valence theory. In this review we shall describe some of the more 
popular methods available for such an investigation, and then show by means of 
two examples what sort of chemical information wave-mechanical calculations 
can give. We could mention here that some methods lead to information that 
can be directly compared with experiment (such as electron-density maps) 
whilst others, such as population analysis, do not. In general there is no single 
‘best’ method of analysis: the different methods tend to be complementary. 

R. McWeeny and B. T. SutcIiffe, ‘Methods of Molecular Quantum Mechanics’, Academic 
Press, New York. 1971. 
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2 Techniques 

Density Maps.-For a preliminary survey of the electron density in a molecule 
one can make a pictorial representation of the calculated electronic charge 
density. The most common choice is a contour diagram (a map with lines 
joining points of equal electron density), although such diagrams do not usually 
give much information; Figure 1 shows a contour map calculated from a Self 
Consistent Field Molecular Orbital (SCF-MO) wavefunction for the tetrahedral 
molecular ion LiNHs+; this shows the electron density surrounding the Li 

H 

\ 
Li H--2N 

H '  
Figure 1 Total SCF-MO electron density map for the molecular ion H,NLi+ drawn in a 
plane containing N, Li, and one of the H atoms. Contours are drawn corresponding to 
values of the electron density as follows: A = 0.002, B = 0.004, C = 0.008, D = 0.020, . . ., N = 20.000 electrons 
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nucleus overlaps relatively little of the electron density surrounding the N; thus 
the Li-N bond is weak. The H nucleus, on the other hand, is closely embedded 
in the contour rings surrounding the N atom. A qualitative examination of the 
diagram therefore reveals that it is difficult and probably pointless to attempt to 
identify a fragment corresponding to a free H atom, but an Li+ fragment can be 
identified quite readily. 

These electron-density maps provide a theoretically calculated quantity which 
can be compared with the results of X-ray diffraction. A whole volume of the 
Transactions of the American Crystallographic Association2 is devoted to reporting 
a symposium on the subject. Among other papers, Cade discusses the probable 
accuracy of quantum-mechanical calculations and Coppens gives alternative 
choices of theoretical and experimental quantities to compare. 

MO Density Diagrams.-Many molecular wavefunctions are currently calculated 
using the SCF-MO scheme, where the total electron density is the sum of the 
densities in the occupied MO’s. Thus one can attempt to understand the total 
electronic density by examining density diagrams for the individual MO’s. 

A good example is the discussion by Buenker and Peyerimhoff3 of the geo- 
metries of H a  molecules. They were testing the theory of Walsh,4 according 
to which the apex angle and bond length of such molecules can be predicted by 
considering the variation of a loosely defined theoretical quantity often referred 
to as an ‘orbital energy’ with the apex angle. Walsh’s arguments are based on 
simpIe concepts pertaining to the effect of atomic orbital (AO) mixing on the 
energy of the MO; conclusions about the geometry are then made easily on the 
basis of which orbitals are occupied in a particular electronic configuration. 
The theory dues give gross features correctly but cannot explain, for example, 
why the isoelectronic molecules BH2- and NH2+ should have very different bond 
lengths. By looking at the orbital density plots (amongst other things) Buenker 
and Peyerimhoff were able to rationalize the experimental facts much more 
convincingly. 

Obvious disadvantages of this kind of approach are (i) the number of orbitals 
can quickly become unmanageable, many MO’s often being involved in the 
bonding with even inner shells having to be considered, and (ii) MO’s are often 
delocalized over the entire molecule, making conclusions about particular bond- 
ing regions difficult to obtain unless one is prepared to transform such MO’s into 
localized MO’s. 

Density Difference Maps.-The electronic rearrangement which takes place when 
atoms combine to form molecules is rather subtle. It is natural to attempt to 
depict this rearrangement by subtracting the superimposed free-atom electron 
densities from the molecular density. Bader, Keaveny, and Cade5 have developed 

a Trans. Amer. Cryst. ASSOC., 1972, 8. 

4A. D. Walsh, J.  Chem. SOC., 1953, 2260. 
R. J. Buenker and S. D. Peyerimhoff, J .  Chem. Phys., 1966,45,3682. 

R. F. W. Bader, I. Keaveny, and P. E. Cade, J. Chem. Phys., 1967,47, 3381. 
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this technique in a large number of systematic applications, but there is a major 
conceptual difficulty in the not-infrequent case that one or more of the atoms 
has a partially filled shell in its electronic ground state. A typical example is NF3; 
the N atom has a unique 2S ground state but the F atoms each have orbital 
configurations s2p5 which give spatially degenerate 2P states. Apart from the 
spin degeneracy there is thus a 33-fold spatial degeneracy. Which combination of 
these spatial wavefunctions should one take as reference states in evaluating the 
atomic densities? 

Figures 2a and 2b, which show two density difference maps for NF3 in a plane 

Figure 2a SCF- MO density diflerence map for NF, (with pyramidalgeometry) drawn in n 
pbne  containing the N and one of the F atoms. This map is the eleclron density of the 
mdecu 'e minus that of 'spherically averaged' atoms. Contours are drawn corresponding 
to values of the electron density as follows: A = -0.800, B = -0.400, C = -0.200, 
D = -0.800,. . ., J = 0 , .  . ., S = +0.800 electrons 
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Figure 2b As for Figure 2a, except that this map is the electron density of the molecule 
minus valence states 

containing the N and one F atom (F1) illustrates the problem; the top map has as 
reference state a ‘spherical average’ of the P I ,  PO, and P-1 states for each F whilst 
the bottom map has a ‘valence state’ in which thepo orbital on each F is singly 
occupied (we should mention that a valence state is not necessarily a true spectro- 
scopic state, rather the state of an atom ‘in the molecule’). 
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The top map shows how electron density is built up in thep, orbital on Ff at 
the expense of the pg orbitals, the bottom map telling a very different story as 
there is now a substantial build-up of electron density between N and FI. The 
two maps are thus quite different and the decision as to which reference state to 
use is clearly subjective: it depends on one’s preconceived ideas about the bonding 
in a molecule. One obvious class of compound for which this choice is rather 
more objective is ionic molecules such as LhS, when one naturally compares the 
molecular density with that of the superimposed ions, Li+ and S2- in this case. 

Integration over a Region of Space.-Our qualitative discussion of Figure 1 
suggested that in favourable circumstances, one might expect to identify spatial 
regions corresponding to atomic fragments. Several recent attempts to achieve this 
quantitatively deserve mention: Bader and BeddallY0 for example, divide up the 
total electron density into atomic regions in which the Virial Theorem 
(V} = - 2(T> is satisfied by the kinetic T and potential V energy operators 
over the region. They have reported results for LiF, LiO, and LiH, together with 
their positive ions, the aim being to find atomic ‘invariants’ such as an atomic 
charge density and potential which can be transferred from molecule to molecule. 

Ransil and Sinai’ have suggested two ways in which the electron density can be 
partitioned numerically: in the first, contours enclosing one nucleus only (see for 
example Figure 1) are taken as defining ‘atomic’ regions, those enclosing two 
or more nuclei regions of ‘delocalization’. In their second scheme regions are 
classified according to the density difference map and the population in each 
region is found by numerical integration. 

Such techniques are not widely used presumably because of the difficulty of 
performing the numerical integrations. Another method, which avoids such 
integrations, will now be described. 

Population Analysis.-The aim of population analysis is to divide up molecules 
into ‘atoms’ and ‘overlap regions’ which can be easily characterized by the amount 
of electronic charge density they contain. If the wavefunction was calculated 
using a set of atomic orbitals (a so-called basis set) which are well localized in 
space on atoms A, By . . . then it is useful to split up the charge density P into 
atom and overlap terms 

P ( r )  = c p w  + c c p m w  (2) 
A A<B 

where P A  is the net density of atom A and PAB the overZap density of the atoms 
A and B. These densities are defined in terms of the atomic orbitals and a matrix 
P which readers familiar with the Hiickel treatment of n-electron molecules will 
recognize as the matrix of charges and bond orders, with the sums running only 

R. F. W. Bader and P. M. Beddall, J. Chem. Phys., 1972,56,3320. 
B. J. Rand and J. J. Sinai, J. Chem. Phys., 1967, 46,4050. 
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over those AOs @Z which are centred on atom A. There is a related formula for 
Pm. To obtain the amounts of electronic charge in the atom and overlap regions 
these densities are integrated to give the corresponding populutions p A  and pAB. 
Given a MO wavefunction and the values of the overlap integrals between the 
AO’s (which have to be calculated anyway, as part of the SCF-MO procedure) 
it is an easy matter to calculate the populations P A  and p m .  

The three basic assumptions of population analysis are as follows: (i) the 
partitioning described by equation (2) is chemically useful ; (ii) useful information 
is retained when the densities are integrated to give populations; (iii) it is valid 
to divide the overlap population p m  into parts and assign the parts to the two 
atoms contributing 

For a given atom A the sum of the fractions U A ~ ,  VAAC, . . . with reference to all 
other atoms By C, . . . is called the valence population VA, the sum of VA and the 
atom population P A  being the gross population 4 ~ .  In the Mulliken scheme,sa 
which is the most widely used, the fractions of equation (4) are assumed equal: 
i.e. the electron density in a given overlap region is allotted equally to the two 
atoms involved. (It is interesting to note that this approximation was used in 
1952 by McWeeny,*b in a crystallographic application; he showed that X-ray 
scattering from an aggregate of bonded atoms could be dealt with in exactly the 
same way theoretically as when no interactions were present by replacing the 
atomic scattering factor by ‘effective’ scattering factors. In the example given, 
H2, the effective scattering factor related to a charge distribution characterized 
by the Mulliken gross population of each H atom). 

Figure 5 (p. 92) shows a contour map of the overlap density function PLiF(r) 
for LiF. It can be seen that the Mulliken assumption is not very realistic for such 
a molecule, as the overlap density is very unequally shared. There are, however, 
alternative schemes such as one we will refer to as the Lowdin-Daudel schemesc 
in which the overlap population is divided up according to the bond dipole - the 
bigger the bond dipole the more unequal the sharing of pAB. 

Population analysis tends to be used in two main ways and the relative 
importance of assumptions (i), (ii), and (iii) is different in either case. Often the 
‘atomic charges’ ZA - qA, where ZA is the nuclear charge number and qA the 
gross population, of atom A are taken as a succinct description of the major 
features of the charge distribution and in particular its polarity. A good example 
is the study by Veillard9 of lithium acetylene, LiCCH, where the gross populations 
of the CT- and w-electrons are presented separately and compared with those in 
acetylene. The molecule is predicted to be highly ionic with no definite Li-C 
bond but rather an ionic association between the Li+ ion, carrying a positive 
charge of 0.78, and the CCH- ion. There is also a small back-donation of electron 

(a) R. S. Mulliken, J.  Chem. Phys., 1955, 23, 1833; (b) R. McWeeny, Acta Cryst., 1952, 5, 
463; (c) P.-0. Lowdin, J .  Chem. Phys., 1953, 21, 374; (d )  R. Daudel, A. Laforgue, and 
C. Vroelant, J .  Chim. phys., 1952, 49, 545. 

@A.  Veillard, J .  Chem. Phys., 1968, 48, 2012. 
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density from C to Li via the nelectrons. When population analysis is used in this 
way assumption (i) is less important than (ii), e.g. it is impossible from the gross 
populations to distinguish an atom whose electron density is approximately 
spherical (e.g. Li+ in Figure 1) from one that is not: population analysis can say 
nothing about the lone-pair in ammonia. 

The second main use of population analysis is to discuss the nature and 
strength of bonding, pAB being taken as a measure of how the strength of a bond 
can be attributed to contributions from atoms A and B. An example is the study 
by Cruickshank et al.1° on KrFz where the overlap populations pKrF and some 
component MO populations are discussed. In this use of population analysis 
assumption (iii) is not required but (i) and (ii) are vital. 

Population analysis is a particularly simple process to perform but the indices 
calculated depend directly on the atomic orbitals used in the calculation, as 
equation (3) shows. This can give rise to the problem of basis set dependence. It 
sometimes happens that two basis sets give strikingly different population indices 
but otherwise give results in good agreement with each other. Mullikenll has 
discussed this problem and given criteria for choosing basis sets which are likely 
to lead to ‘reasonable’ populations. A basis set is said to be physically balanced 
if it has sufficient flexibility to describe all parts of the molecule well, and formally 
balanced if each atom has an adequate number of atomic orbitals centred on it. 
Only formally balanced basis sets are likely to lead to numerical populations that 
are meaningful (thus a wavefunction for HF calculated using only F atomic 
orbitals could be physically balanced if enough atomic orbitals were used, but it 
is not formally balanced and one would not attach much importance to the 
resulting gross populations of 10 for F and 0 for H). 

There are, however, examples in the literature of bad disagreement between 
calculations on the same molecule using rather similar basis sets of AO’s.12 

As an alternative to dividing up the overlap population between two contri- 
buting atoms one can reject assumptions (ii) and (iii) and just investigate the net 
and overlap densities PA and P A B  directly rather than their integrals. Bader and 
Henneker13 have used this approach to study the degree of ionicity in LiF: a 
‘classical’ model of the ionic bond was taken as two charged spheres each slightly 
polarized by the electric field of the other, this electron density distribution then 
being compared with an SCF-MO one by calculating the forces exerted by the two 
distributions on the nuclei. 

Again, Roby14 argues that it is not very useful to attempt to split up the electron 
density in the bonding region at all : the electron density is genuinely shared by the 
participating atoms. Thus he is able to give a very different definition for the 
atomic charges etc., which seem to have none of the disadvantages of the 
Mulliken-type schemes. 

’” G .  A. D. Collins, D. W. J. Cruickshank, and A. Breeze, Cham. ComM., 1970, 884. 
l 1  R. S. Mulliken, J .  Chem. Phys., 1962, 36, 3428. 
l a  R. S. Mulliken and P. Politzer, J .  Chem. Phys., 1971, 55, 5135. 
l 3  R. F. W. Bader and W. Henneker, J .  Amer. Chem. SOC., 1965, 87, 3063. 
l 4  K. R. Roby, M o f .  Phys., 1974, 1, 81. 
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Summary.-The methods discussed can be conveniently classified into those 
which investigate electron densities directly (total densities, difference densities, 
and the like) and those methods which attempt to characterize regions of space 
numerically, usually by the amount of electron density contained within the 
regions. Population analysis is probably the easiest method to use as the cal- 
culation is rather simple, For this reason it is almost certainly the most widely 
used method; it can give useful information when applied to a series of related 
molecules or when used in conjunction with other methods of analysis, but its 
predictive value is small when used in isolation on a single molecule. 

In Section 3 we show how the different methods are used together to give 
information about the bonding in LiF, then in Section 4 the differences between 
the electronic structures of NH3 and LiNH3+ are discussed, 

3 How Ionic is LiF? 
Throughout this section all calculations refer to an isohfed LiF molecule, i.e. 
LiF(g) and not LiF(c). Before giving any quantitative results it is useful to discuss 
what might be expected, in line with the general aim of the review. 

Clearly LiF will be strongly ionic, approximating to LifF-, and so to get any 
insight into its bonding it is necessary to compare LiF with Li+ and F- ions since 
a comparison with the neutral atoms would show a predominant charge transfer 
from Li to F and consequent expansion of the fluorine L shell, which would mask 
any more subtle effects. 

We could imagine then a ‘zero-order’ description of LiF comprising two 
undistorted (spherical) ions at their equilibrium distance: a better approximation 
would result if polarization of the charge clouds were admitted, i.e. the spherical 
ions would distort owing to their mutual repulsions. In orbital language the AO’s 
of Li+ would be allowed to vary owing to the nearby F- ion and vice versa, but no 
MO formation would be allowed at this stage. Finally a covalent interaction 
could be allowed in which MO’s were formed. We can summarize this as follows 

1 spherical Li+ and F- ions (at equilibrium separation) 

2 distorted Li+ and F- ions 

3 LiF molecule 

J. polarization 

+ covalence 

However, the problem of basis set dependence (see p. 86) must be remembered : 
if the Li+ and F- basis sets were sufficiently large the zero-order wavefunction 
would be a rather good approximation and we would ascribe nearly all improve- 
ments on going from 1 to 3 above to polarization and few to covalence. On the 
other hand, if we had used a very small basis set of AO’s comprising Is orbitals 
on Li and F with 2s and 2p on F we would find no polarization effects whatever. 

This qualitative discussion suggests a number of questions: (i) how closely 
does a good SCF-MO wavefunction for LiF resemble the ‘zero-order’ model? 
(ii) is the polarization of Li+ and F- ions the same as one would find from clas- 
sical electrostatics? (iii) is it possible to distinguish between polarization and 
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covalence effects? With these questions in mind we now examine the various 
methods of analysis. 

Ransil and Sinai7 have calculated an electron-density map for LiF using an 
accurate SCF-MO wavefunction and by numerical integration over the closed 
contours around the Li and F nuclei (i.e. those contours which only encircle one 
atom) obtained the amounts of electron density in each atomic region. A com- 
parison with the free-atom values shows that there has been a substantial amount 
of charge transfer on forming the molecule from F and Li atoms. An SCF-MO 
density difference map of the molecule minus undistorted ions is shown in 
Figure 3. Bader and Henneker13 have discussed a similar map, together with one 

F Li 
Figure 3 Total SCF-MO density difference map for LiF with respect to free ions. Contours 
as Figure 2a 

of the molecular density minus that of the free atoms. On comparing the two 
maps it turns out that the contours of Figure 3 are very much smaller than those 
on the (molecule - atoms) map, showing that LiF is much more nearly ionic 
than covalent. It should be remembered that Figure 3 is a density diflerence map 
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and so a large positive contour around the F is not due to the initially greater 
amount of charge on that centre. It can be seen that electron density has been 
removed from the region in front of the Li+ ion (i.e. the region close to Li and in 
between Li and F) and increased in the region behind it. We call this a dipole 
polarization. Overall the F electron density is slightly more contracted than that 
of a free F- ion as the outer parts of the F density are negative, and is polarized 
towards the Li nucleus. The Li approximates very closely to a Li+ ion slightly 
polarized away from F-. 

It is interesting to examine the density difference map for the n-electrons 
separately (Figure 4). Comparing Figures 3 and 4, and noting that both the shape 

F 

Figure 4 SCF-MO density diference map for the 
n-electrons of LiF with respect to the a-parts of the 
density in the free ions. Contours as for ,Figure 2a 
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of the positive contours stretching out from F to Li and also the n-map contours 
are very similar in magnitude to the total, one might guess that the n-orbitals 
are more important than the a-orbitals in moving electron density into the 
bonding region. 

Some of the more significant statistics from population analysis studies of LiF 
with the SCF-MO wavefunctions used to calculate Figures 3 and 4 are shown in 
Table 1. Clearly, LiF is rather close to Li+(ls2) F-(ls22s22p6) as the gross popu- 

Table 1 Some indices from apopulation analysis study of an SCF-MO wavefunction 
for LiF 

low din-Daudel 
(a) Overall indices 

pLi” a 0.059 
77- 0.088 
total 0.147 

valence population of Li 
with respect to F 

a - 0.009 
0.034 

valence population 0.123 
gross population 9.922 
valence population 0.025 

Li gross population 2.078 
atomic charge 0.922 

3.992 
1.971 
3.953 
0.001 
0.004 
1.984 

Li if PU 0.050 
0.044 

i 
(b) Gross populations 

> P n  

Mulliken 

0.030 
0.044 
0.074 
9.873 
0.074 
2.127 
0.873 

3.970 
1.956 
3.942 
0.001 
0.004 
2.014 
0.060 
0.053 

lations show. The d-orbital gross population is very small but this does not mean 
that such polarization functions are unimportant. The overlap population p L i F  

is small at 0.147 when compared with more typical values of ca. 0.7 for covalent 
molecules like NH3; the u contribution (0.059) turns out to consist of a negative 
term (due to overlap of Li s with Fp, orbitals) close to Li and a positive term 
(mainly Lip,:Fp,) rather polarized towards F. In the Mulliken scheme this 
overlap population is divided equally between Li and F as shown, but when the 
Lowdin-Daudel scheme is used, the a-valence population of Li is negative 
( - 0.009). Because of this very unequal sharing of the overlap density one would 
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hesitate to ascribe to it any ‘covalent’ interaction: it represents rather a reorgani- 
zation within the electron density of the F- ion. On the other hand, the overlap 
density is more nearly equally shared on the Lowdin-Daudel scheme with a 
valence population of F of 0.054 and Li 0.034, so one might tentatively suggest 
that there is evidence for a weak n-bond. 

To re-emphasize the point regarding the allocation of overlap dmsity between 
two atoms by equation (4), Figure 5 is a contour map for the overlap density 
PFLi(r). It shows that the electron density in the bonding region is really very 
unequally shared: there is a region of negative overlap near the Li nucleus and a 
smaller one near F. The region of positive overlap is well towards the F end of the 
bond and extends some distance from the internuclear axis as one might expect 
from the relative importance of the n-contribution. 

By studying the gross populations in Table 1 of the individual atomic orbitals 
on F and comparing with similar quantities for a free F- ion one can show that 
the outermost part of the F charge density has contracted considerably in going 
to LiF, both for 2s and 2p orbitals. On the other hand, the inner 1s orbital is not 
significantly affected. 

To conclude, very good agreement between the descriptions of LiF is given 
by the various methods and the following points can be made. The electron 
density is reasonably well approximated by the superposition of ions but there 
are considerable distortions from the spherical shape. The polarization of the F- 
ion is not exactly what one would expect classically, since the o- and T- parts 
need to be considered separately and, whilst the distortion of the o-density is 
essentially a polarization towards Li+ and contraction, that of the n-density can 
best be described as a weak covalent bond. 

4 How does LiNH3+ differ from NH3? l5 
We have already discussed the total electron-density map (Figure 1) caIcuIated 
for LiNH3+ from an accurate SCF-MO wavefunction (see p. 80), and decided 
that to a good approximation the molecule can be regarded as a combination 
of NH3 with Li+. The dipole moment p calculated for the molecule at the par- 
ticular geometry chosen for the SCF-MO calculation is 2.591 atomic units and 
if we write 

p(LiNH3) = p(NH3) + ccR(Li-N) (5 )  

where R(LI-N) is the Li-N bond distance, then u would be exactly 1 if no 
charge transfer or polarization had taken place. In fact u = 0.872, showing that 
there has been a substantial charge transfer to Li from N. The atomic charges are 
calculated from a Lowdin-Daudel population analysis to be 0.937 (1 .O), - 0.345 
(- 0.187), and 0.136 (0.062) for Li, N, and H, respectively, with the corresponding 
free Li+ and NH3 values in parentheses. This shows the polarization of the NH3 
fragment, whilst the overlap population in the NH bond hardly changes, being 
0.702 in LiNH3+ and 0.733 in NH3. Again, the valence population of H is almost 

l5 A. Hinchliffe and J. C. Dobson, Theor. Chim. Acfa, 1975,39, 17. 
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constant at 0.569 as compared with 0.594 in NH3. That the Li-N bond is weak 
is shown by the overlap population of 0.108. 

A density difference map calculated from the same SCF-MO wavefunction of 
molecule minus (NH3 + Li+) fragments is shown in Figure 6; like Figure 1 it is 

Li 

Figure 6 SCF-MO density difference map of the molecular ion H,NLi+ with respect to 
NH, and Li+, drawn in the same plane as Figure 1. Contours as for Figure 2a 

93 



Chemical Interpretations of Molecular Wavefunctions 

drawn in a plane containing Li, N, and one of the H atoms. It can be seen that 
the Li+ exhibits the same dipole polarization as the Li in LiF (see Section 3), 
since electron density is removed from ‘in front’ of the Li nucleus as demon- 
strated by the dotted contours, and redistributed behind the nucleus. The N atom, 
on the other hand, shows a quadrupolar polarization : electron density is removed 
from the regions on either side of the nucleus and transferred to regions above 
and below. Such a polarization turns out to be common for atoms which bond 
mainly through p-electrons,Is and a closer examination of the density difference 
map for LiF shows the same feature. The zero-contour line (J on the map) is 
rather close to the N-H bond, supporting the assertion that the overlap density 
in the N-H bond hardly changes on molecule formation. 

5 Conclusions 
In this review we have tried to show how useful chemical information can be 
recovered from wavefunctions. There is no ‘best’ method of analysis. The use of 
density difference maps can draw attention to electronic rearrangements different 
from those expected on preconceived ideas of bonding, whilst Lowdin-Daudel 
population analysis is, we believe, a useful guide for intepreting the density 
difference maps. In conjunction with a knowledge of the polarity of atomic 
densities, population analysis helps in an understanding of the origin of dipole 
and yuadrupole moments. 

The authors thank Dr. R. F. Weaver for Figure 2. Professor Ashmore, Professor 
Cruickshank, and Dr. McDougall are thanked for their helpful comrr,ents on 
the manuscript and the University of Manchester Regional Computer Centre 
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la R. F. W. Bader, I. Keaveny, and G. Runtz, Canad. J.  Chem., 1969, 47, 2308. 
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